Submission: 10 October 2017

Date: 11-15 March 2018

Location: San Diego, California, USA


Submission: TBD

Date: 13-18 May 2018  

Location: San Jose, California, USA

SPIE Photonics West OPTO 
Submission: 17 July 2017
Date: 27 Jan - 1 Feb 2018  
Location: San Francisco, California, USA

SPIE Optics and Photonics
Submission: 23 Jan 2017
Date: 6 - 10 Aug 2017  
Location: San Diego, California, USA

IEEE Sensors 

Submission: June 15, 2016 passed

Date: 30-2 Oct 2017

Location: Orlando, FL, USA

Mid-Infrared Optoelectronics 

Submission: June 23 2016

Date: 18-22 Sep 2016

Location: Beijing, China


​Submission: May 15 2016

​Date: 31 July-04 August 2016

​Location: Singapore

Submission: Sep 10, 2016 passed
Date: 10-12 Oct 2016 
Location: Shanghai, China

Submission: Feb 1 2016

Date: 14-17 Oct 2016
Location: Chengdu China 

What we do?

The constant advancement of nanotechnology has led to the advent of numerous nanoscale structures such as photonic crystals, plasmonic nanoantennas, carbon nanotubes, semiconductor nanowires, nanocantilevers, etc. These nanostructures are originally developed in disparate nanotechnology fields such as nanophotonics, nanoelectronics or nanomechanics towards nanoscale functional elements in respective fields .

On the other hand, connecting different nanotechnology fields via on-chip integration of these nanostructures to form multiphysics nanodevices is also an interesting nanotechnology theme but has been overlooked. Through careful arrangement of different nanoscale functional elements on one device platform, we envision new types of devices with novel or expanded functionalities.  Eventually this "integration on the nanoscale" strategy will lead to next generation multiphysics functional chips.  

You are welcome to look at some selected publications on the homepage and see how on-chip integration of multiphysics nanostructures can lead to nanodevices with unprecedented functionalities. 


  1. Novotny, L. & van Hulst, N. Antennas for light. Nature Photonics 5, 83-90 (2011)  PDF
  2. K. B. Crozier, A. Sundaramurthy, G. S. Kino & C. F. Quate. Optical antennas: Resonators for local field enhancement .J. Appl. Phys. 94, 4632 (2003)  PDF
  3. Jing  Wang , Yiting  Chen , Xi  Chen, Jiaming  Hao, Min Yan, Min  Qiu. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Optics Express   Vol. 19, Issue 15,pp. 14726-14734(2011)      PDF
  4. Na Liu,Ming L. Tang,Mario Hentschel,Harald Giessen& A. Paul Alivisatos.Nanoantenna-enhanced gas sensing in a single tailored nanofocus.Nature Materials :10,631–636(2011)  PDF
  5. ​Nanfang Yu ; Smythe, Elizabeth J. ; Diehl, L. ; Crozier, Kenneth B. ; Capasso, F. Plasmonic Laser Antennas and Related Devices.IEEE Journal of Selected Topics in Quantum Electronics 1077-260X(2008).  PDF
  6. ​​Ertugrul Cubukcu and Federico Capasso.Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons.Appl. Phys. Lett. 95, 201101 (2009).  PDF
  7. ​Randolph Kirchain & Lionel Kimerling.A roadmap for nanophotonics.Nature Photonics 1, 303 - 305 (2007) .  PDF
  8. ​Nathan C Lindquist, Prashant Nagpal, Kevin M McPeak, David J Norris and Sang-Hyun Oh. Engineering metallic nanostructures for plasmonics and nanophotonics. Physics, Volume 75, Number 3.     PDF​
  9. ​Fang-Fang Ren, Kah-Wee Ang, Jiandong Ye, Mingbin Yu, Guo-Qiang Lo, and Dim-Lee Kwong.Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector.Nano Lett., 2011, 11 (3), pp 1289–1293.    PDF
  10. ​Patrice Genevet and Federico Capasso,Breakthroughs in Photonics 2013: Flat Optics: Wavefronts Control With Huygens' Interfaces,Photonics Journal, 2014, 6 (4)   PDF 
  11. Alireza Bonakdar and Hooman Mohseni ,Impact of optical antennas on active optoelectronic devices,Nanoscale,2014,6,10961-10974   PDF   
  12. Nature Nanotechnology Editorial, Focusing in on applications, Nature Nanotechnology, 10, 1 (2015)    
  13. H. J. Lezec, A. Degiron, E. Devaux1, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen,Beaming Light from a Subwavelength Aperture, Science, 297(5582):820-822, (2002)   PDF         
  14. F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec and T. W. Ebbesen, Focusing light with a single subwavelength aperture flanked by surface corrugations, Appl. Phys. Lett. 83, 4500 (2003)   PDF        
  15. Nikolay I. Zheludev, The Road Ahead for Metamaterials, Science, 5978(328):582-583, 2010  PDF
  16. Patrice Genevet1 and Federico Capasso. Holographic optical metasurfaces: a review of current  progress. Physics, Volume 78, Number 2, 2015 .  PDF    
  17. Mohammadreza Khorasaninejad1,*, Wei Ting Chen1,*, Robert C. Devlin1,*, Jaewon Oh1,2, Alexander Y. Zhu1, Federico Capasso,Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,Science  03 Jun 2016: Vol. 352, Issue 6290, pp. 1190-1194    PDF   
  18. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, "Metasurfaces: From microwaves to visible," Physics Reports 634, 1-72 (2016).        
  19. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations, Phys. Rev. Applied 3, 037001 (2015)                         
  20. Joseph J Talghader, Anand S Gawarikar and Ryan P Shea, Spectral selectivity in infrared thermal detection,  1, e24, (2012)
  21.  Kosmas L. Tsakmakidis, Allan D. Boardman & Ortwin Hess."‘Trapped rainbow’ storage of light in metamaterials".Nature| Vol 450| 15 .   PDF                                                                




Online Courses:​

Microphotonic RF receiver Presentation Slides

Electrical and Computer Engineering, Purdue University :Nanometer Scale Patterning and Processing    Presentation Slides

Nanophotonics: Discovering the Magic of Light in Nanostructures

UWEE Research Colloquium October 11 2016 - Andrei Faraon Caltech

Shrinking Micropscope Lenses

The lens that could shrink your camera

Camera inspired by the mantis shrimp 1 

Camera inspired by the mantis shrimp 2

Optical Nanoantenna - Ertugrul Cubukcu

Molding Optical Wavefronts Flat Optics based on Metasurfaces

Shrinking microscope lenses 

Ultra-thin Plasmonic Metasurfaces 

Andrea Alù The Fascinating Optics of Metasurfaces

Alex High Hyperbolic metasurfaces a plasmonic platform for engineering

Marin Soljacic Canceling waves enable new kind of light trapping

Immigrant Entrepreneur Marin Soljacic of WiTricity Corp

Mark Brongersma Nanophotonics for solar energy harvesting

Antennas for Light - New Directions for Detection and Generation of Light

Applying Sub-wavelength Electromagnetics and Nanophotonics for energy Conversion

Dr. Mario Martinis - Metasurface cavity antennas

Nano-scale Plasmonics and its applications - Xiang Zhang

On The Quest To Invisibility - Metamaterials and Cloaking

Scientific highlights - Plasmonics Professor Stefan Maier

Surface Plasmon Resonance Explained

Intro to Nanophotonics

Nader Engheta Of Light Electroncs and Metamaterials 

Sub-wavelength Photonics From Light Manipulation to Quantum Levitation at the Na

Nanophotonics and some of its applications: security, energy , displays

Nanfang Yu Harvard

Lukas Novotny Havard

Schawlow-Townes Symposium on Photonics 2015 - Nader Engheta

2D Materials Workshop Tony Low 2D Plasmonics Modeling

Mark Brongersma Plasmonics and Mie scattering

Plasmonic Nanoparticles and Nanostructures (Ivan Smalyukh)

Photonics Integrated Circuits for Data Communication

The Promise of Silicon Photonics

Hybird Silicon Photonics Integrated Circuits

Silicon photonic integrated circuits and lasers

Volker Sorger Plasmonics enables more efficient silicon photonics

Alan Wilmer - Orbital Angular Momentum Multiplexing

Vladimir Shalaev The Exciting Science of Light with Metamaterials

Vladimir Shalaev META15 Conference

Nader Engheta META15 Conference

Federico Capasso META15 Conference

Spinoptics Spin Degeneracy Removal in Nanostructures - Erez Hasman